

St. Xavier's Sr. Sec. School Delhi-54

Class 1 12-5-2	l1 015	First Unit Test in PHYSICS	Time : 1 hr. M. Marks : 20
1.	State the principle of homogene	ity	(1)
2.	Write the dimensional formula o	f universal gravitational constant and press	ure. (1)
3.	Convert one joule of energy in t	o ergs using dimensional analysis.	(2)
4.	Check the dimensional accuracy	of the following equation $h = \frac{2\sigma \cos \theta}{r_{\rho}g}$.	
	Where 'h' is capillary rise of liqui acceleration due to gravity and	d, σ , ρ , g and are surface tension, density, radius respectively.	(2)
5.	Write four limitation of dimension	nal analysis.	(2)
6.	Show that relative error in the p individual quantities.	roduct of two quantities is the sum of relati	ve errors of the (2)
7.	The radius of a sphere is measu percentage of error in the deter	red by a screw gauge as $r = (3.0 \pm 0.1)$ cm mination of volume of the sphere.	n. Calculate the (2)
8.	Suggest two methods to reduce	the errors during measurements in the lab.	(2)
9.	A particle moving in a circular particle following physical quantities (i) Mass of the particle (m) (ii) Speed of the particle (v) (iii) Radius of the circular particle an expression for centrip	ath experiences centripetal force (F) which and th (r). etal force using dimensional analysis.	depends on (3)
10.	Two resistances $R_1 = (6 \pm 0.2)\Omega$ maximum percentage error in the	and $R_2 = (3 \pm 0.6)\Omega$ are connected in parall ne combination.	el. Find the (3)

-x-x-x-x-x-